If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=35Y^2+21Y
We move all terms to the left:
-(35Y^2+21Y)=0
We get rid of parentheses
-35Y^2-21Y=0
a = -35; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·(-35)·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*-35}=\frac{0}{-70} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*-35}=\frac{42}{-70} =-3/5 $
| 7(w+7)=4w+34 | | 7(w+7=4w+34 | | .5x-1=3(.5x+2) | | n+12=48 | | 9x+16=-7x | | –2(6x+8)+7x=3x –2(12+4x) | | 5x=1.6+0.25x | | 2(x-26)=264 | | 12+h=17 | | 5(x+2)2x+2=0 | | 5(3+2a)=104.50 | | 11+r=14 | | 7x-4=5x-x-3+5 | | 9-n=22 | | 2=2i | | 6x–9=12+3x | | 10^x=30 | | 8x-4+x=113 | | (x+5)^2-64=0 | | x-96(409)=(2) | | (x+5)^2-64=0(x+5)2−64=0 | | x-96=(409)(2) | | 4x+3x-7=14 | | 4(-2y-1)=-3y-5y+3 | | x=4^3 | | -22x^2+8x-10=-12x^2 | | (p+3)/2=(P-4)/4 | | 8-4x=4(x-3) | | 12x+4(3x+3)=4(6x+4)-4 | | −7m=7 | | 44=2(n+12)-18 | | 9(n+3)+9=90 |